Exercise 31

Find the orthogonal trajectories of the family of curves. Use a graphing device to draw several members of each family on a common screen.

$$
y=\frac{k}{x}
$$

Solution

To find the orthogonal trajectories, we have to solve for $y^{\prime}(x)$, set y_{\perp}^{\prime} equal to the negative reciprocal, and then solve for y_{\perp}. Start by differentiating both sides of the given equation with respect to x.

$$
\begin{aligned}
\frac{d}{d x}(y) & =\frac{d}{d x}\left(\frac{k}{x}\right) \\
\frac{d y}{d x} & =-\frac{k}{x^{2}}
\end{aligned}
$$

Solve the original equation for k,

$$
k=\frac{y^{2}}{x^{3}},
$$

and plug the expression into the equation.

$$
\frac{d y}{d x}=-\frac{x y}{x^{2}}=-\frac{y}{x}
$$

Here is where we introduce y_{\perp}.

$$
\frac{d y_{\perp}}{d x}=\frac{x}{y_{\perp}}
$$

Since this equation is separable, we can solve for y_{\perp} by bringing all terms with y_{\perp} to the left and all constants and terms with x to the right and then integrating both sides.

$$
\begin{aligned}
y_{\perp} d y_{\perp} & =x d x \\
\int y_{\perp} d y_{\perp} & =\int x d x \\
\frac{1}{2} y_{\perp}^{2} & =\frac{1}{2} x^{2}+C
\end{aligned}
$$

Multiply both sides by 2 .

$$
y_{\perp}^{2}=x^{2}+2 C
$$

Take the square root of both sides. Let $A=2 C$.

$$
y_{\perp}= \pm \sqrt{x^{2}+A}
$$

This is the family of curves orthogonal to $y=k / x$.

Figure 1: Plot of $y=k / x$ in blue $(k=0, \pm 5, \pm 10)$ and the orthogonal trajectories y_{\perp} in red ($A=0, \pm 5, \pm 10$).

